Examples#
Here’s how to get started with Microframe:
Quick Start#
Import MicroFrame and load a dataset:
import microframe as mf
# Read a CSV file into a MicroFrame object
mframe = mf.read_csv("path_to_your_csv_file.csv")
# Alternatively, create a MicroFrame object manually
data = [[1, "a"], [2, "b"], [3, "c"]]
dtypes = ["int32", "U1"]
columns = ["num", "char"]
mframe = mf.MicroFrame(data, dtypes, columns)
mframe.head() # Display first 5 rows
# Extract data as numpy array
mframe_slice = mframe.iloc[:, 0] # returns all rows, but just col 0
numpy_array = mframe_slice.to_numpy() # returns mframe_slice as a numpy array
Basic Usage#
Basic Usage#
MicroFrame simplifies the process of data analysis. Here are some basic operations:
Reading from a CSV#
import microframe as mf
mframe = mf.read_csv("path_to_your_csv_file.csv")
Creating a MicroFrame Object#
import microframe as mf
data = [[1, "a"], [2, "b"], [3, "c"]]
dtypes = ["int32", "U1"]
columns = ["num", "char"]
mframe = mf.MicroFrame(data, dtypes, columns)
Data Manipulation#
MicroFrame provides several methods to manipulate your data:
Renaming Columns#
mframe.rename({"num": "number", "char": "character"})
Changing Data Types#
mframe.change_dtypes({"number": "float64", "character": "U10"})
Accessing Column Data with Boolean Indexing#
data = [[1, "a"], [2, "b"], [3, "c"]]
dtypes = ["int32", "U1"]
columns = ["num", "char"]
mframe = mf.MicroFrame(data, dtypes, columns)
first_col = mframe["num"] # Access just num column
Accessing Row Data with iloc
#
first_row = mframe.iloc[0]
Advanced Indexing with iloc
#
The iloc
indexer allows for integer-location based indexing:
Accessing a Single Row#
first_row = mframe.iloc[0]
Accessing Multiple Rows#
first_two_rows = mframe.iloc[:2]
Accessing a Single Cell#
cell_value = mframe.iloc[2, 1]
Setting a Value in a Cell#
mframe.iloc[2, 1] = "Test"
Slicing Rows and Columns#
subset = mframe.iloc[:2, :2]
Displaying Data#
Similar to pandas, you can display parts of your dataset:
Print the First Few Rows#
mframe.head(2)
Print the Last Few Rows#
mframe.tail(2)
Converting to NumPy Array#
For times when you need to work with a NumPy array, MicroFrame provides the to_numpy
method:
# Convert the MicroFrame to a 2D NumPy array
numpy_array = mframe.to_numpy()
This method will convert the structured data within the MicroFrame to a regular 2D NumPy array.
Chaining iloc
with to_numpy
#
For scenarios where you need to perform NumPy operations on a subset of your data, you can chain the iloc
indexer with the to_numpy
method:
# Select the first two rows using iloc and convert them to a NumPy array
numpy_subset = mframe.iloc[:, 1:5].to_numpy()